Networks Dg gates
how do we go from logic to gates? eg start with turk table, duildequivalent gates $F(x, y) \quad x, y$ inputs, network F gives the answer ex.

$x y$	F
00	1
01	0
10	0
11	1

F is "tue" (1) when $x<y$ are the same
so $F=1$ when $\bar{x} \bar{y}$ or $x y \quad$ (drop "" so $x y \Rightarrow x \cdot y$)
o $F=\bar{x} \bar{y}+x y$
each "miniterm" ($\bar{x} \bar{y} \varepsilon x y$) is made up ib products that result in $F=1$
F is the sum if products (SOP)

now apply deMorgan's the/

$$
\begin{aligned}
\bar{F}= & \overline{\bar{x} \bar{y}+x y}=(\overline{\bar{x} \bar{y})} \overline{(x y)} \\
= & (x+y)(\bar{x}+\bar{y}) \\
= & x \bar{x}+x \bar{y}+y \bar{x}+y \bar{y} \\
= & x \bar{y}+y \bar{x} \\
F= & \overline{x \bar{y}+y \bar{x}}=\overline{(x \bar{y})} \overline{(y \bar{x})} \\
& =(x+\bar{y})(\bar{x}+y)
\end{aligned}
$$

this is a "proderet fums" (POS) where each miniterm is the or for where $F=0$
$e x$

$x y$	z	F			
0	0	0	0		
0	0	1	1	$\bar{x} y z$	
0	1	0	1	$\bar{x} y$	\bar{z}
0	1	1	1	$\bar{x} y z$	
1	0	0	0		
1	0	1	1	$x \bar{y} z$	
1	1	0	0		
1	1	1	0		

so $f=\bar{x} \bar{y} z+\frac{2}{x} y \bar{z}+\bar{x} y z+x \bar{x} \bar{z}$
simplify!

$$
\begin{aligned}
F & =\bar{x} y\left(\frac{2}{z}+\bar{z}\right)+(\bar{x}+x) \bar{y} z \\
& =\bar{x} y+\bar{y} z
\end{aligned}
$$

In general: count how many times $F=0$: $F=1$ if $\# F=1<E F=0$ then use SoP

$$
>
$$ POS

Binary, Decimal, Octal, Hex
number 3282 is implied as base 10 ("decimal")

1. base $10 \Rightarrow 10$ characters needed D represent each number ($0,1, \ldots 9$)
2. "place" counting from right starting ω / ϕ
3. each digit tells how many powers of 10 place
ex: place 3210 base

Base 2: Binary so need 2 digits 0,1 place 43210

$$
\begin{aligned}
& \text { ncubser } 1 \times 2^{4} 2_{1 \times 2^{3}}^{10 \times 2^{2}} 1 \times 2^{1} \\
& 11001_{2}=(1 \times 10)+(1 \times 8)+1=25_{10}
\end{aligned}
$$

How to convert from decimal to binary?
ex 328210
need to know powers of 2

n	2^{n}
0	1
1	2
2	4
3	8
4	16
5	32

	0	
n	2^{4}	etc.
6	64	
7	128	
8	256	
9	512	
10	1024	
11	2048	

talce $328210 \Rightarrow$ largest 2^{n} that fits is $n=11,2^{n}=2048$

$$
\begin{aligned}
& \begin{array}{l}
3282 \\
2048
\end{array} \\
& \begin{array}{l}
1234 \\
1024
\end{array} \Rightarrow \text { target } 2^{n} \text { is } n=10,2^{10}=1024 \\
& \begin{array}{l}
210 \\
128
\end{array} \Rightarrow \quad 1 \quad \text { is } u=7 \quad 2^{7}=128 \\
& \begin{array}{l}
82 \Rightarrow 2^{6}=64 \\
\frac{64}{18} \Rightarrow 2^{4}
\end{array} \\
& \begin{array}{l}
\frac{16}{2} \Rightarrow 2^{4}=16 \\
\frac{2}{2} \Rightarrow 2^{1}
\end{array} \\
& \frac{2}{2} \Rightarrow 2^{1}
\end{aligned}
$$

place $\quad 1109876543210$

$$
110011010010_{2}=328210
$$

Another algorithm (equivalent)

$$
1 \text { Stent wi } 3282 / 2
$$

2. remainder is ϕ so whatever binary rep is of 3282 will have a of in the
"least significant bit" (LSB) digit
3. $3282 / 2=1641$ remaindu 0
iterate on each diveded result
$\Rightarrow 1641 / 2=820$ remainder 1 so next digit will be 1

$3282=110011010010$ binary
look at groups D binary digits.
e.g. groups of 3 bits
possible values?
place: 210
lowest $000=0$
nighest $111=1 \times 2^{2}+1 \times 2^{2}+1 \times 2^{0}$

$$
=7
$$

There are 8 possible values, $0,1, \ldots 7$ So we can take a binary number ?
look at groups of 3 bits and calk value beach group
bx. $\underbrace{100101}_{6} \underbrace{001}_{5} \underbrace{000101}_{0} \underbrace{01}_{5}$
65105 is the representation in a base that has 8 symbols, $0-7$
Ease 8 "Octal" 8 symbols
binary \Longleftrightarrow octal is easy using trick 8 dividing binary rato groups of 3
Can also divide briny ito groups of 4
largest value for 4 bits $=1111=8+7=15$

need 16 symbols:

$$
0,1, \ldots, A, B, C, B, E, F
$$

Computes
Integers in binary form - how to represent integers in computers
easy: use binary
ex: 4-bit computer can store 16 possible numbers what about neg numbers?
need to use 1 bit to specify $+\pi$ -
sigusit $0=+1=-$
ones complement: if $\angle 0$, invert bits

$$
\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 & 3 \\
0 & 1 & 0 & 0 & 4 \\
0 & 1 & 0 & 1 & 5 \\
0 & 1 & 1 & 0 & 6 \\
0 & 1 & 1 & 1 & 7 \\
1 & 0 & 0 & 0 & -7 \\
1 & 0 & 0 & 1 & -6 \\
1 & 0 & 1 & 0 & -5 \\
1 & 0 & 1 & 1 & -4 \\
1 & 1 & 0 & 0 & -3 \\
1 & 0 & 1 & -2 \\
1 & 1 & 1 & 0 & -1 \\
1 & 1 & 1 & 1 & -0
\end{array}
$$

Twos complement: is complement, add I to inverted

brick: $1110=\operatorname{MSB}(1) *-8$
add to bottom 3 bits $110=6$

$$
6-8=-2 \quad \checkmark
$$

Advantage if 2° comp:
no need to treat pos a neg differently for add ex: $69+12$ (8-bit computer) or subtract

$$
\begin{aligned}
& 69=01011 \\
& 12=\frac{010101}{00001100} \\
& 01010001 \\
& 64+16+1=81
\end{aligned}
$$

how would yon subtract $81-12$?
same as $81+(-12)$
-12 in 1° complement

$$
\begin{aligned}
12 & =000011100 \\
-12 & =1111110011 \\
+81 & =0110100001 \\
-12 & =\frac{11111}{10} 100011 \\
& 1000100
\end{aligned}
$$

2^{8} complement

$$
\begin{aligned}
& 12=00001100 \\
& 10 \mathrm{com}-12=11110011 \\
& 2^{8} \mathrm{com} \quad 11110100 \\
& +81=0111010001 \\
& \rightarrow(-12) \frac{11110100}{101000101}=69 \text { (drop last bit on left) }
\end{aligned}
$$

It's like "borrowing" in decimal arithmetic
Computer arithmetic: gates for adding let x y be binary
construct $S=x+y$ arithmetic not or

$x y$	5
00	0
01	1
10	1
11	2

not binary symbol need another bit for 2

$x y$	s	c
00	0	0
01	1	0
10	1	0
11	0	1

$$
C \equiv \text { "carry" bit }
$$

gates: $S=x \oplus y$ i $C=x y$ easy
 "primitive" 1 -bit adder

$$
\Rightarrow \quad=\quad \begin{array}{ll}
x & s \\
y & c
\end{array}=
$$

you hook this circuit up as needed

